Malcolm H. Chisholm,\* John C. Huffman and Suri S. Iyer

Department of Chemistry and Molecular Structure Center, Indiana University, Bloomington, IN 47405, USA

Received 23rd December 1999, Accepted 23rd February 2000 Published on the Web 4th April 2000

The reactions between [Rh<sub>2</sub>(OAc)<sub>2</sub>(CH<sub>3</sub>CN)<sub>4</sub>][BF<sub>4</sub>], and each of the tertiary phosphines PMe<sub>3</sub>, PCy<sub>3</sub> (Cy = cyclohexyl), Me<sub>2</sub>PCH<sub>2</sub>CH<sub>2</sub>PMe<sub>2</sub> (dmpe), Ph<sub>2</sub>PCH<sub>2</sub>CH<sub>2</sub>PPh<sub>2</sub> (dppe), Me<sub>2</sub>PCH<sub>2</sub>PMe<sub>2</sub> (dmpm) and Ph<sub>2</sub>PCH<sub>2</sub>PPh<sub>2</sub> (dppm) have been studied by <sup>1</sup>H and <sup>31</sup>P{<sup>1</sup>H} NMR spectroscopy in CD<sub>3</sub>CN. The chelating phosphines dppe and dppm catalyze the exchange of coordinated CH<sub>3</sub>CN for solvent CD<sub>3</sub>CN exchange prior to any other observable substitution chemistry. The monodentate phosphines initially form kinetically labile biaxially ligated complexes, [Rh<sub>2</sub>(OAc)<sub>2</sub>(CH<sub>3</sub>CN)<sub>4</sub>(PR<sub>3</sub>)<sub>2</sub>][BF<sub>4</sub>]<sub>2</sub> prior to substitution of the equatorial CH<sub>3</sub>CN by PR<sub>3</sub>. Over time, the biaxial complex rearranges to form the monoaxial, monoequatorial complex, involving displacement of a single equatorial CH<sub>3</sub>CN ligand. For PCy<sub>3</sub> the complex [Rh<sub>2</sub>(OAc)<sub>2</sub>(CH<sub>3</sub>CN)<sub>3</sub>(PCy<sub>3</sub>)<sub>2</sub>][BF<sub>4</sub>]<sub>2</sub> has been characterized by <sup>1</sup>H and <sup>31</sup>P{<sup>1</sup>H} NMR spectroscopy. With time, a further reaction occurs leading to the cleavage of the Rh-Rh bond and the monomeric complex [Rh(CH<sub>3</sub>CN)<sub>2</sub>(PCy<sub>3</sub>)<sub>2</sub>][BF<sub>4</sub>] has been identified. Crystal data at +25 °C: space group  $P2_1 nm$ , a = 9.879(1) Å, b = 13.275(1) Å, c = 16.705(1) Å and Z = 4. A similar reaction sequence is observed with PMe<sub>3</sub> but more isomers of formula [Rh<sub>2</sub>(OAc)<sub>2</sub>(CH<sub>3</sub>CN)<sub>3</sub>(PMe<sub>3</sub>)<sub>2</sub>][BF<sub>4</sub>]<sub>2</sub> are observed by <sup>31</sup>P{<sup>1</sup>H} NMR spectroscopy. Reactions involving dppe lead to axial and equatorial Rh-P bonded complexes. Based on <sup>31</sup>P{<sup>1</sup>H} NMR data, the bisequatorial complex formulated as [Rh<sub>2</sub>(OAc)<sub>2</sub>(CH<sub>3</sub>CN)<sub>2</sub>(dppe)][BF<sub>4</sub>]<sub>2</sub> is formed. The formation of the latter, which has been followed from 35 to 80 °C, is evidently reversible since all attempts to crystallize the complex yielded only the acetonitrile salt [Rh2(OAc)2(CH3CN)4][BF4]2 and free dppe. With dppm, only axial ligation is observed while for dmpm and dmpe the substitutional behavior is more complex and has not been evaluated in detail. The activation parameters for the conversion of the biaxial [Rh<sub>2</sub>(OAc)<sub>2</sub>(S)<sub>4</sub>(L)<sub>2</sub>][BF<sub>4</sub>]<sub>2</sub> to the monoaxial, monoequatorial  $[Rh_2(OAc)_2(S)_3(L)_2][BF_4]_2$  complex  $(S = CH_3CN \text{ and } L = \text{phosphine})$  have been determined. For  $L = PMe_3$ ,  $\Delta H^{\ddagger} = 16(1)$  kcal  $mol^{-1}$  and  $\Delta S^{\ddagger} = -9(3)$  cal  $K^{-1}$   $mol^{-1}$  and for  $L = PCy_3$ ,  $\Delta H^{\ddagger} = 21(1)$ kcal mol<sup>-1</sup> and  $\Delta S^{\ddagger} = +2(3)$  cal K<sup>-1</sup> mol<sup>-1</sup>. For dppe, the 1:1 adduct shows only one type of <sup>31</sup>P signal for the initial axial complex indicative of rapid exchange of free and bound PPh2 groups. The rearrangement to the equatorialaxial isomer  $[Rh_2(OAc)_2(S)_3(dppe)][BF_4]_2$  occurs with  $\Delta H^{\ddagger} = 26(1)$  kcal mol<sup>-1</sup> and  $\Delta S^{\ddagger} = +12(1)$  cal K<sup>-1</sup> mol<sup>-1</sup>. Collectively these data show that substitution at the Rh<sub>2</sub><sup>4+</sup>-center proceeds via an initial reversible associative process followed by an interchange of labile axial for inert equatorial sites. These results are compared with earlier studies of the substitution of  $M_2^{4+}$ -containing complexes, where M = Mo, Ru and Rh.

### Introduction

DOI: 10.1039/b001444n

A large number of dinuclear complexes containing a central  $M_2^{4+}$  core are known, many of which contain M-M bonds and have a common structural motif.<sup>1</sup> Such is the case for  $M_2(O_2CR)_4$  compounds which are known for M = Cr, Mo, W, Ru, Rh and Cu with a common lantern or paddle wheel  $(D_{4h})$   $M_2(O_2C)_4$  core. For M = Mo, W and Rh these compounds display a rich substitution chemistry and are often employed as starting materials in the synthesis of other dinuclear complexes.<sup>1</sup> Since the discovery by Bear *et al.*<sup>2</sup> that Rh<sub>2</sub>(OAc)<sub>4</sub> shows antitumor activity for cancerous cells *in vitro* other workers have been attracted to the fundamental substitution chemistry of Rh<sub>2</sub><sup>4+</sup>-containing compounds with nitrogen bases and purines.<sup>3</sup>

In comparing the reactivity of  $Mo_2(O_2CR)_4$  and  $Rh_2(O_2CR)_4$  compounds we have noted that the former may be characterized as labile and the latter as inert.<sup>4</sup> We suggested that the vast difference in rates of reactivity may reflect, in part, ground state effects associated with the M-M bond electronic configur-

 $\dagger$  Dedicated to Professor Jack Halpern on the occasion of his 70th birthday.

ation.<sup>4</sup> Thus the  $Mo_2^{4+}$  center with M-M  $\sigma^2\pi^4\delta^2$  has low lying vacant metal based orbitals which may facilitate carboxylate group scrambling as seen in the reactions between Mo<sub>2</sub>(O<sub>2</sub>CR)<sub>4</sub> and Mo<sub>2</sub>(O<sub>2</sub>CR')<sub>4</sub> which occur upon mixing in a solvent such as benzene<sup>4,5</sup> or as in the fluxional nature of the [Mo<sub>2</sub>(µ-O<sub>2</sub>C<sup>t</sup>Bu)<sub>4</sub>- $(\eta^1-O_2C^tBu)$ ] anion by way of associative chemistry: bonds to Mo may be formed with or without sacrificing M-M bonding.6 By contrast Rh<sub>2</sub>(O<sub>2</sub>CR)<sub>4</sub> compounds undergo carboxylate group scrambling only under more forcing conditions. The addition of [Bu<sub>4</sub><sup>n</sup>N][OAc] to [Rh<sub>2</sub>(O<sub>2</sub>C<sup>t</sup>Bu)<sub>4</sub>] reversibly forms a salt  $[Bu_4^nN]_2[(\eta^6-C_6H_5Me)Rh_8(\mu-O_2C^tBu)_{16}(\mu-\eta^1,\eta^1-OAc)_2]$  in toluene, for example. Here the Rh-Rh bonding electronic configuration is  $\sigma^2 \pi^4 \delta^2 \delta^{*2} \pi^{*4}$  and this may be compared with the kinetically inert t2g6 configuration seen in mononuclear octahedral complexes of Co<sup>3+</sup>, Rh<sup>3+</sup>, Ir<sup>3+</sup> and Pt<sup>4+</sup> which generally undergo substitution by dissociative, D, or interchangedissociative, I<sub>d</sub>, mechanisms.8

In comparing the rates of solvent exchange in the  $[M_2(OAc)_2(MeCN)_6][BF_4]_2$  complexes we again observed kinetic lability for M=Mo and the inertness of the Rh complex which undergoes exchange of  $CH_3CN$  for  $CD_3CN$  (solvent) very much more slowly.<sup>4</sup> Specifically, the  $[Rh_2(OAc)_2(CH_3CN)_6][BF_4]_2$  complex, which has the structure shown in A below (S' and S

are the axial and equatorial CH3CN's; O-O represents the acetate ligand) and was prepared originally by Garner and coworkers,9-11 contains two types of coordinated CH3CN ligands. S' are axial ligands and S are equatorial with respect to the Rh-Rh bond and their exchange rates with CD<sub>3</sub>CN vary greatly. S' are labile as a result of the strong trans-influence and trans-effect of the Rh-Rh bond but S, the equatorial sites are inert as judged by the fact that it requires heating in CD<sub>3</sub>CN to bring about any significant exchange with the solvent. Indeed, even at 100 °C the  $t_{\frac{1}{2}}$  for CH<sub>3</sub>CN for CD<sub>3</sub>CN (solvent) exchange was of the order of 4 h and, from a study of the rate of CH<sub>3</sub>CN for CD<sub>3</sub>CN exchange over a temperature range, we estimated  $\Delta H^{\ddagger} = 33 \text{ kcal mol}^{-1} \text{ and } \Delta S^{\ddagger} \approx +11 \text{ cal } K^{-1} \text{ mol}^{-1}, \text{ which}$ is consistent with a dissociative or interchange dissociative mechanism for the exchange of the equatorial CH<sub>3</sub>CN solvent ligands S in A.4

In order to probe further the details of the substitution chemistry of  $Rh_2^{4+}$  centers we determined to study the reactions of  $[Rh_2(OAc)_2(CH_3CN)_6][BF_4]_2$  with tertiary phosphines in  $CD_3CN$  solutions by NMR spectroscopy. This study takes advantage of the use of  $^{31}P\{^{1}H\}$  and  $^{1}H$  NMR spectroscopy, the occurrence of  $^{103}Rh$ ,  $I=\frac{1}{2}$ , 100% natural abundance and the prior work by Drago and coworkers  $^{12}$  who classified bis(phosphine) complexes of dirhodium as Class I (biaxial), Class II (biequatorial) and Class III (monoaxial, monoequatorial) as depicted by **B**, **C** and **D** below, respectively ( $S = CH_3CN$ ,

 $L = PR_3$ ). The differentiation of **B**, **C**, **D** can be based on  $^{13}P\{^1H\}$  chemical shifts. Of course, for compounds of type **C** and **D** more than one isomer is possible.

We describe here our findings of the substitution chemistry of  $[Rh_2(OAc)_2(CH_3CN)_6][BF_4]_2$  in  $CD_3CN$  with the tertiary phosphines  $PMe_3$ ,  $PBu_3^n$ ,  $PCy_3$  (Cy=cyclohexyl),  $Me_2PCH_2-CH_2PMe_2$  (dmpe),  $Ph_2PCH_2CH_2PPh_2$  (dppe),  $Me_2PCH_2PMe_2$  (dmpm) and  $Ph_2PCH_2PPh_2$  (dppm).

#### Results and discussion

The reaction between [Rh<sub>2</sub>(OAc)<sub>2</sub>(CH<sub>3</sub>CN)<sub>6</sub>][BF<sub>4</sub>]<sub>2</sub> and PMe<sub>3</sub> in CH<sub>2</sub>Cl<sub>2</sub> or CH<sub>3</sub>CN is extremely rapid at room temperature and leads to products of cleavage of the Rh–Rh bond, namely a black insoluble precipitate and a square planar Rh(I) complex [Rh(PMe<sub>3</sub>)<sub>2</sub>(CH<sub>3</sub>CN)<sub>2</sub>][BF<sub>4</sub>]. The reaction with the extremely bulky PCy<sub>3</sub> ligand was significantly slower. However, this reaction too led to cleavage of the Rh–Rh bond and the bright yellow crystalline compound [Rh(CH<sub>3</sub>CN)<sub>2</sub>(PCy<sub>3</sub>)<sub>2</sub>][BF<sub>4</sub>] was isolated in *ca.* 40% yield based on Rh together with a black insoluble precipitate which was not characterized. However, an intermediate in this reaction, the green crystalline compound [Rh<sub>2</sub>(OAc)<sub>2</sub>(CH<sub>3</sub>CH)<sub>3</sub>(PCy<sub>3</sub>)<sub>2</sub>][BF<sub>4</sub>]<sub>2</sub> was isolated and characterized, see Experimental section.

### Solid-state structure

[Rh(CH<sub>3</sub>CN)<sub>2</sub>(PCy<sub>3</sub>)<sub>2</sub>][BF<sub>4</sub>]. An ORTEP drawing of the square planar Rh(I) cation is shown in Fig. 1 and selected bond

**Table 1** Selected bond distances (Å) and angles (°) for  $[Rh(CH_3CN)_2-(PCy_3)_2][BF_4]$ 

| Rh1-P2      | 2.342(2)  | P13-C14     | 1.858(6) |
|-------------|-----------|-------------|----------|
| Rh1-P13     | 2.340(2)  | P13-C20     | 1.850(8) |
| Rh1-N24     | 1.984(4)  | P2-C3       | 1.864(6) |
| N24-C25     | 1.134(6)  | P2-C9       | 1.856(8) |
| C25-C26     | 1.459(7)  |             | , ,      |
|             |           |             |          |
| P13-Rh1-P2  | 175.55(8) | Rh1-P13-C20 | 111.1(1) |
| P13-Rh1-N24 | 89.7(1)   | Rh1-N25-C25 | 175.9(5) |
| P2-Rh1-N24  | 90.1(1)   | Rh1-P2-C3   | 113.6(1) |
| N24-Rh1-N24 | 179.3(3)  | Rh1-P2-C9   | 111.1(1) |
| Rh1-P13-C14 | 114.2(1)  |             |          |
|             |           |             |          |

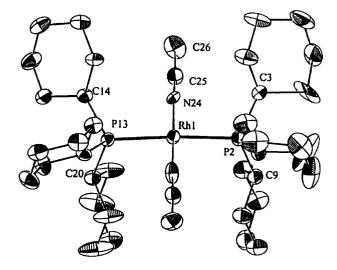



Fig. 1 An ORTEP<sup>19</sup> diagram of  $[Rh(CH_3CN)_2(PCy_3)_2][BF_4]$  with thermal ellipsoids at the 50% probability level. The hydrogen atoms and the  $BF_4$  anions are omitted for clarity.

distances and bond angles are given in Table 1. There is nothing exceptional about the structural features of this d<sup>8</sup> Rh(I) cation and the P–Rh–P angle is close to 180° as expected. The Rh–P distances are similar to those seen in [Rh(PPh<sub>3</sub>)<sub>3</sub>(CH<sub>3</sub>CN)]<sup>+</sup>-[BF<sub>4</sub>]<sup>11</sup> and [Rh(PPh<sub>3</sub>)<sub>2</sub>(CO)(CH<sub>3</sub>CN)][HC(SO<sub>2</sub>CF<sub>3</sub>)<sub>2</sub>]<sup>12</sup> as are the Rh–N distances of the coordinated acetonitrile ligands.

[Rh<sub>2</sub>(OAc)<sub>2</sub>(CH<sub>3</sub>CN)<sub>2</sub>(PCy<sub>3</sub>)<sub>2</sub>][BF<sub>4</sub>]<sub>2</sub>. There was a disorder with one of the MeCN ligands and the two BF<sub>4</sub><sup>-</sup> anions show a 50% site occupancy within the unit cell. These crystallographic problems prevent us from presenting any reliable structural information on this compound though there is little doubt that this is a dinuclear compound containing two bulky PCy<sub>3</sub> groups, one at each metal center with one being axially ligated and the other equatorial as demanded by the NMR studies presented below.

### NMR studies

Because the reactions between  $[Rh_2(OAc)_2(CH_3CN)_6][BF_4]_2$  and tertiary phosphines proceed so rapidly at room temperature they were followed by  $^{31}P\{^1H\}$  and  $^1H$  NMR spectroscopy in  $CD_3CN$  as solvent in NMR tube reactions. In these studies the tertiary phosphine was added to a cooled or frozen solution of the  $Rh_2$ -cationic complex and the sample was introduced into the precooled probe of an NMR spectrometer. The reaction was then monitored with time and temperature.

**Reactions involving PMe<sub>3</sub>.** The addition of PMe<sub>3</sub> to  $[Rh_2-(OAc)_2(CH_3CN)_6][BF_4]_2$  in  $CD_3CN$  solvent at -35 °C results in the formation of the biaxially ligated complex, **B**, or Class I complex. This is evidenced by the appearance of a single  $^{31}P\{^1H\}$  signal at  $ca.\ \delta-35.5$ , downfield from free PMe<sub>3</sub>. The  $^{31}P\{^1H\}$  signal of this bis adduct gives rise to an AA'XX'

spectrum resulting from the  $^{31}P^{-103}Rh^{-103}Rh^{-31}P$  connectivity and the spectrum was satisfactorily simulated with the following coupling constants  $J_{RhRh} = 5$  Hz,  $^{1}J_{RhP} = 55$  Hz,  $^{2}J_{RhP} = 25$  Hz and  $J_{PP} = 400$  Hz. These coupling constants are closely related to those reported by Drago *et al.*<sup>12</sup> for [Rh<sub>2</sub>(O<sub>2</sub>C-CF<sub>3</sub>)<sub>4</sub>(PPh<sub>3</sub>)<sub>2</sub>] and related complexes. The addition of an excess of PMe<sub>3</sub> (>2 equiv.) led to line broadening between the free and the coordinated PMe<sub>3</sub> ligands at -35 °C while when less than 2 equiv. of PMe<sub>3</sub> were added only the signal for the bis-ligated complex was seen. The latter finding indicates a cooperative binding of PMe<sub>3</sub> to the Rh<sub>2</sub><sup>4+</sup> center is favored and that the monoligated complex is labile to disproportionation to give the Class I complex and the starting material, eqn. (1).

$$2[Rh2(OAc)2(CH3CN)4(PMe3)][BF4]2 == [Rh2(OAc)2(CH3CN)4][BF4]2 + [Rh2(OAc)2(CH3CN)4(PMe3)2][BF4]2 (1)$$

$$Class I$$

It is worth emphasizing at this point that the original  $Rh_2^{4^+}$ -containing complex contained six  $CH_3CN$  ligands: four equatorial and two axial. The two axial  $CH_3CN$  ligands undergo essentially instantaneous exchange with the  $CD_3CN$  solvent and thus by  $^1H$  NMR spectroscopy appear as free  $CH_3CN$ . At -35  $^{\circ}C$  the formation of the bis(phosphine) complex of Class I occurs without any detectable equatorial  $CH_3CN$  for solvent  $CD_3CN$  exchange.

At -35 °C further reaction is very slow requiring several days to give a mixture of two isomers of a Class III complex. At 0 °C in CD<sub>3</sub>CN the formation of the two Class III isomers (monoaxial, monoequatorial) requires 10 h. The two possible isomers are shown in Scheme 1 as **E** and **F** and occur in the approximate

Scheme 1 Isomerizations of  $[Rh_2(OAc)_2(CH_3CN)_4(PMe_3)_2][BF_4]_2$ .  $S = CH_3CN, S' = CD_3CN; L = PMe_3$ .

ratio 3:1. Evidence that these isomers are of the type Class III (**D** shown earlier) comes from the appearance of one  ${}^{31}P\{{}^{1}H\}$  signal at  $ca. \delta - 40$  and the other at  $ca. \delta + 12$ , corresponding to axial and equatorial Rh–PMe<sub>3</sub> groups, respectively. Regrettably the NMR data do not allow us to distinguish between the isomers **E** and **F** shown in Scheme 1. However, we can say that the formation of the Class III isomer occurs with the loss of only one CH<sub>3</sub>CN equatorial ligand and thus the isomers have the formula  $[Rh_2(OAc)_2(CH_3CN)_3(PMe_3)_2][BF_4]_2$ .

At 0 °C, with further time new <sup>31</sup>P{<sup>1</sup>H} signals grow in the region expected for Class II isomers (see C earlier) which have equatorial Rh–P bonds. Three isomers are possible for a Class

II isomer (see Scheme 1). Regrettably from reactions between [Rh<sub>2</sub>(OAc)<sub>2</sub>(CH<sub>3</sub>CN)<sub>4</sub>][BF<sub>4</sub>]<sub>2</sub> and PMe<sub>3</sub> we have not been able to isolate any compound in a pure state and with an excess of PMe<sub>3</sub> reactions evidently proceed rapidly to give cleavage of the Rh–Rh bond.

We have monitored the conversion of the biaxial PMe<sub>3</sub> complex to the isomers **E** and **F** in the temperature range -25 °C to +5 °C by following the disappearance of the  $^{31}P\{^{1}H\}$  signal for the Class I complex, **B**, as a function of time. Slopes of  $\ln[Rh_2(OAc)_2(CH_3CN)_4(BF_4)_2]$  versus time were linear for over three half-lives thus implicating at least a pseudo first order reaction for the disappearance of the Class I complex  $[Rh_2-(OAc)_2(CH_3CN)_4(PMe_3)_2][BF_4]_2$ . From plots of  $\ln(k_{obs})$  versus 1/ temperature (Kelvin) we can estimate the activation parameters for the reaction shown in eqn. (2) to be  $\Delta H^{\ddagger} = 16(1)$  kcal mol<sup>-1</sup> and  $\Delta S^{\ddagger} = -9(3)$  cal  $K^{-1}$  mol<sup>-1</sup>.

$$\begin{split} [Rh_2(OAc)_2(CH_3CN)_4(PMe_3)_2][BF_4]_2 \xrightarrow[CD_3CN]{} \\ [Rh_2(OAc)_2(CH_3CN)_3(PMe_3)_2][BF_4]_2 + CH_3CN \quad (2) \end{split}$$

In the presence of an excess of PMe<sub>3</sub> (4 or more equivalents) the disappearance of [Rh<sub>2</sub>(OAc)<sub>2</sub>(CH<sub>3</sub>CN)<sub>4</sub>][BF<sub>4</sub>]<sub>2</sub> was faster and the formation of products more complex. We take this as evidence for the reversible binding of PMe<sub>3</sub> in the biaxial complex, eqn. (1), and that once PMe<sub>3</sub> has acquired an equatorial site a further PMe<sub>3</sub> ligand can coordinate in the axial site to give compounds of the type [Rh<sub>2</sub>(OAc)<sub>2</sub>(CH<sub>3</sub>CN)<sub>3</sub>(PMe<sub>3</sub>)<sub>3</sub>][BF<sub>4</sub>]<sub>2</sub> which are also labile toward CH<sub>3</sub>CN ligand displacement and Rh–Rh bond rupture. A similar reaction sequence was seen in reactions involving PBu<sup>n</sup><sub>3</sub> but was not followed in detail.

Because of the facility of these reactions with PMe<sub>3</sub> and PBu<sup>n</sup><sub>3</sub>, we turned our attention to the use of the bulky PCy<sub>3</sub> ligand (Cy = cyclohexyl) which has a Tolman cone angle <sup>13</sup> greater than 180°. For this monodentate tertiary phosphine the coordination of two PCy<sub>3</sub> ligands at the same metal center in a *cis* manner would be sterically impossible!

Reactions employing PCy3. The addition of PCy3 to [Rh2-(OAc)<sub>2</sub>(CH<sub>3</sub>CN)<sub>4</sub>][BF<sub>4</sub>]<sub>2</sub> in CD<sub>3</sub>CN at -20 °C leads to a slower sequence of events wherein by <sup>31</sup>P{<sup>1</sup>H} NMR spectroscopy we can observe the initial formation of a monoaxial adduct followed by formation of the biaxial Class I complex. The free PCy<sub>3</sub> appears at  $\delta$  -4, the monophosphine complex at  $\delta$  -23 and the biaxial Class I complex at  $\delta$  –4.5. The conversion of the Class I biaxial complex to the monoaxial, monoequatorial Class III complex was followed with time in the temperature range -20 to +35 °C by monitoring the disappearance of the biaxial complex. From these studies we obtain an estimate of the activation parameters:  $\Delta H^{\ddagger} = 21(1) \text{ kcal mol}^{-1} \text{ and } \Delta S^{\ddagger} = +2(3)$ cal K<sup>-1</sup> mol<sup>-1</sup>. In view of the equilibria involving the biaxially ligated complex of Class I we cannot attempt to interpret these parameters beyond noting that enthalpically the conversion of the Class I to Class III compound is more demanding for the bulky PCy<sub>3</sub> ligand than for PMe<sub>3</sub>. It is this  $\Delta H^{\ddagger}$  term which leads to the notably lower rate of conversion. Also, in contrast to reactions employing PMe3, we only observe one isomer of the monoaxial, monoequatorial complex [Rh2(OAc)2(CH3-CN)<sub>3</sub>(PCy<sub>3</sub>)<sub>2</sub>][BF<sub>4</sub>]<sub>2</sub>. Only one equatorial CH<sub>3</sub>CN ligand is displaced in this substitution process. There are three distinct CH<sub>3</sub>CN signals of equal intensity for the bound CH<sub>3</sub>CN ligands as expected from the structure of this compound seen in the solid state. With time, however, this compound decomposes at room temperature to give products of cleavage of the Rh–Rh bond, one of which has been characterized as [Rh(CH<sub>3</sub>CN)<sub>2</sub>-(PCy<sub>3</sub>)<sub>2</sub>][BF<sub>4</sub>]. The other compound is a black insoluble precipitate which has not been characterized.

The reaction between [Rh<sub>2</sub>(OAc)<sub>2</sub>(CH<sub>3</sub>CN)<sub>4</sub>][BF<sub>4</sub>]<sub>2</sub> in CD<sub>3</sub>-CN and PCy<sub>3</sub> (4 or more equivalents) has been followed at 25 °C. The reaction proceeds more rapidly in the presence of

an excess of 2 equiv. of PCy<sub>3</sub> but only the biaxial complex, the monoaxial, monoequatorial complex and the mononuclear Rh<sup>I</sup> complex are seen by  $^{31}P\{^{1}H\}$  NMR spectroscopy and cleavage of the Rh–Rh bond is complete within 2 h. The reactions involving [Rh<sub>2</sub>(OAc)<sub>2</sub>(CH<sub>3</sub>CN)<sub>4</sub>][BF<sub>4</sub>]<sub>2</sub> and PCy<sub>3</sub> are summarized in Scheme 2.

Scheme 2  $S' = CD_3CN$ ;  $L' = PCy_3$ .

For the reactions involving the monodentate PR<sub>3</sub> ligands described so far we can conclude the following. The substitution reaction of CH3CN for PR3 in the reaction between [Rh<sub>2</sub>(OAc)<sub>2</sub>(CH<sub>3</sub>CN)<sub>4</sub>][BF<sub>4</sub>]<sub>2</sub> and PR<sub>3</sub> proceeds in a two step process. (1) The initial formation of a biaxial complex of formula [Rh<sub>2</sub>(OAc)<sub>2</sub>(CH<sub>3</sub>CN)<sub>4</sub>(PR<sub>3</sub>)<sub>2</sub>][BF<sub>4</sub>]<sub>2</sub> is rapid and reversible. (2) The second step in the reaction is slower and involves an interchange mechanism wherein one of the axially bound PR<sub>3</sub> ligands displaces an equatorially bound CH<sub>3</sub>CN ligand to form [Rh<sub>2</sub>(OAc)<sub>2</sub>(CH<sub>3</sub>CN)<sub>3</sub>(PR<sub>3</sub>)<sub>2</sub>][BF<sub>4</sub>]<sub>2</sub> of Class III. This may, depending upon R, exist in more than one isomer and subsequent reactions lead to cleavage of the Rh-Rh bond. The overall rate of the reactions are dependent on both the concentrations of PR<sub>3</sub> and the nature of PR<sub>3</sub>. Since these reactions proceed much faster than the rate of CD<sub>3</sub>CN for CH<sub>3</sub>CN exchange in the [Rh<sub>2</sub>(OAc)<sub>2</sub>(CH<sub>3</sub>CN)<sub>4</sub>]<sup>2+</sup> cation<sup>4</sup> it is evident that substitution of the equatorial CH<sub>3</sub>CN ligand is promoted by the initial coordination of the PR<sub>3</sub> in the axial position. The PR<sub>3</sub> for CH<sub>3</sub>CN substitution has the appearance of the associative interchange mechanism described previously in our studies of tertiary phosphine for tertiary phosphine exchange at  $M_2^{4+}$ -centers (M = Mo, W), eqn. (3). 14

$$M_2Cl_4L_4 + L' \longrightarrow M_2Cl_4L_3L' + L$$
 (3)

Reactions with chelating tertiary diphosphines. With one equivalent of dmpe or dppe,  $[Rh_2(OAc)_2(CH_3CN)_4][BF_4]_2$  in  $CD_3CN$  at -30 °C shows  $^{31}P\{^{1}H\}$  signals, one at  $ca. \delta -25$ , the other at  $ca. \delta -10$ , both as 1:2:1 triplets. The interpretation of this observation is open to question. A monoaxial compound could be fluxional on the NMR time-scale as shown in eqn. (4)

(S = CH<sub>3</sub>CN, S' = CD<sub>3</sub>CN; L–L' = dppe or dmpe). Fluxional  $\eta^1$ -dmpe and  $\eta^1$ -dppe ligands are known in mononuclear complexes <sup>15</sup> and no  $J_{\rm RhP}$  coupling is observed at -30 °C. Alter-

natively one equivalent of the chelating phosphine could rapidly and reversibly link two Rh<sub>2</sub><sup>4+</sup> centers as shown in J.

When more than one equivalent of the chelating phosphines is added then signals associated with bound and uncoordinated <sup>31</sup>P nuclei can be seen along with the signal of free dppe or dmpe. This suggests that adducts of the type **K** are formed

where exchange between bound and free ligands is relatively slow on the NMR time scale. Also in this instance the  $\eta^{I}$ -ligands are not fluxional on the NMR time-scale.

The most dramatic difference between the reactions involving dmpe and dppe in CD<sub>3</sub>CN at  $-30\,^{\circ}\text{C}$ , as determined by NMR spectroscopy, is that the latter (dppe) but not the former (dmpe) causes a rapid exchange of bound equatorial CH<sub>3</sub>CN for CD<sub>3</sub>CN (solvent). This exchange is readily seen by  $^{1}\text{H}$  NMR spectroscopy. This facile exchange of equatorial CH<sub>3</sub>CN for CD<sub>3</sub>CN (solvent) was also seen previously in reactions involving the addition of chelating ligands 2,2'-bipyridine, 1,10-phenanthroline and OAc<sup>-,4a</sup> In each case the addition of the bidentate ligand effects CH<sub>3</sub>CN (equatorial) for CD<sub>3</sub>CN solvent exchange without any apparent reaction beyond a reversible axial coordination. Why this should be is quite puzzling, as is the fact that dmpe does not effect this reaction.

In the reaction between  $[Rh_2(OAc)_2(CH_3CN)_4][BF_4]_2$  and dppe we can observe the conversion of the Class I compound to a Class III compound, a monoaxial, monoequatorial compound as evidenced by <sup>31</sup>P signals at  $\delta$  –36 (axial Rh–P) and +59 (equatorial Rh–P). These occur in the integral ratio 1:1. The reaction with 1 equiv. of dppe was monitored in the temperature range +22 to +78 °C and an estimate of the activation parameters was obtained:  $\Delta H^{\ddagger} = 26(1)$  kcal mol<sup>-1</sup> and  $\Delta S^{\ddagger} = +12(3)$  cal K<sup>-1</sup> mol<sup>-1</sup>.

A further reaction occurs as evidenced by the disappearance of the signal at  $\delta-36$  and the growth of the signal at  $\delta+59$ . This is believed to be a biequatorially substituted isomer, or Class II compound. Of the three possible isomers for such a compound the one shown in Scheme 3 is believed to be most likely as this one has the dppe ligand bridging the Rh–Rh bond in a staggered manner which is well known for dppe ligands at dinuclear metal centers.<sup>1</sup>

While it is quite evident from <sup>31</sup>P{<sup>1</sup>H} NMR studies that a single isomer of formula [Rh(OAc)<sub>2</sub>(dppe)(CD<sub>3</sub>CN)<sub>x</sub>][BF<sub>4</sub>]<sub>2</sub> is formed all attempts to isolate this compound by crystallization failed. Indeed, cooling to -20 °C leads to the *slow* crystallization of [Rh<sub>2</sub>(OAc)<sub>2</sub>(CD<sub>3</sub>CN)<sub>6</sub>][BF<sub>4</sub>]<sub>2</sub> and free dppe. Thus we believe that compound L shown in Scheme 3 must be formed reversibly and that the less soluble acetonitrile complex crystallizes from solution preferentially. The reactions shown in Scheme 3 have been recycled several times in selected NMR tube reactions and in no instance has Rh–Rh bond cleavage been observed.

Reactions involving the methylene bridged diphosphines Me<sub>2</sub>PCH<sub>2</sub>PMe<sub>2</sub> (dmpm) and Ph<sub>2</sub>PCH<sub>2</sub>PPh<sub>2</sub> (dppm) were also studied but proved to yield a myriad of products as judged by

Table 2 Summary of activation parameters for equatorial CH<sub>3</sub>CN substitution in [Rh<sub>2</sub>(OAc)<sub>2</sub>(CH<sub>3</sub>CN)<sub>4</sub>]<sup>2+</sup> in CD<sub>3</sub>CN solution

| Ligand (L)         | $\Delta H^{\ddagger}$ /kcal mol <sup>-1</sup> | $\Delta S^{\ddagger}$ /cal K <sup>-1</sup> mol <sup>-1</sup> |
|--------------------|-----------------------------------------------|--------------------------------------------------------------|
| PMe <sub>3</sub>   | 16(1)                                         | -9(3)                                                        |
| PCy <sub>3</sub>   | 21(1)                                         | +2(3)                                                        |
| dppe               | 26(1)                                         | +12(3)                                                       |
| CD <sub>3</sub> CN | 33(1)                                         | +11(3)                                                       |

Scheme 3 Reaction of  $[Rh_2(OAc)_2(CH_3CN)_6][BF_4]_2$ .  $S = CH_3CN$ ;  $S' = CD_3CN$ ; L-L = dppe.

 $^{31}P\{^{1}H\}$  NMR spectroscopy and no single compound was obtained by crystallization. At low temperatures, ca. -30 °C, the initial formation of axially bound phosphine complexes occurs as evidenced by  $^{31}P\{^{1}H\}$  chemical shifts of  $\delta-25$  (dmpm) and -26 (dppm). Subsequent to this  $^{31}P$  signals in the region  $\delta+10$  to +60 grow in and these are taken as evidence for the formation of equatorial Rh–P bonds. However, we cannot determine that the Rh–Rh bond remains intact.

## **Concluding remarks**

This work shows that the [Rh<sub>2</sub>(OAc)<sub>2</sub>(CH<sub>3</sub>CN)<sub>4</sub>]<sup>2+</sup> cation reacts with monodentate tertiary phosphines in a sequential manner. The formation of the axially ligated Class I compounds is rapid and reversible and is followed by a slower reaction to form a monoaxial, monoequatorial compound, Class III compound, by the displacement of a single CH<sub>3</sub>CN equatorial ligand in CD<sub>3</sub>CN as solvent. The rate of this reaction is markedly dependent upon the PR<sub>3</sub> ligand (R = Me  $\approx$  Bu<sup>n</sup> > Cy). In the case of the chelating diphosphine dppe this event occurs in a stepwise manner and the chelating effect does not facilitate the substitution of the Rh–S equatorial site, Scheme 3. A summary of the activation parameters for equatorial CH<sub>3</sub>CN substitution is given in Table 2. The increase in  $\Delta H^{\ddagger}$  within the series PMe<sub>3</sub> < PCy<sub>3</sub> < dppe < CD<sub>3</sub>CN is understandable in terms of the basicity of the entering ligand in the axial position facilitating a bond dissociation in the equatorial site. The entropic term becomes more positive along this series which suggests that bond dissociation or a more disordered transition state is more important as we progress from PMe<sub>3</sub> to PCy<sub>3</sub> to dppe to CD<sub>3</sub>CN. The data clearly support an interchange mechanism for equatorial CH<sub>3</sub>CN bond substitution involving prior coordination of the entering ligand at the axial site. In this regard the mechanism is similar to that for M-PR<sub>3</sub> substitution by PR<sub>3</sub>' ligands in M<sub>2</sub>Cl<sub>4</sub>(PR<sub>3</sub>)<sub>4</sub> compounds described previously in this journal.14

The ability of certain chelating ligands such as dppe, dppm, 2,2'-bipyridine, 1,10-phenanthroline to catalyze the exchange of equatorial CH<sub>3</sub>CN ligands for CD<sub>3</sub>CN solvent molecules implies the rapid and reversible formation of an activated complex that is kinetically labile yet not directly on the path of the substitution chemistry described here. We have previ-

ously suggested the possibility of the reversible formation of a mixed valence complex  $Rh^{II}$ – $Rh^{I}$  wherein the Rh(i) center is kinetically labile.<sup>4</sup> Obviously this possibility and other details of the substitution behavior of  $Rh_2^{\ 4+}$  centers remain to be investigated.

#### **Experimental**

#### Physical techniques

<sup>1</sup>H NMR spectra were recorded on a Varian XL-300 spectrometer at 300 MHz in the appropriate dry and oxygen-free solvents. <sup>31</sup>P{<sup>1</sup>H} NMR spectra were recorded on a Nicolet 360 MHz spectrometer, all samples being referenced to external H<sub>3</sub>PO<sub>4</sub>. All chemical shifts are reported in ppm relative to the protio impurity signals of the solvents. Elemental analyses were carried out by Atlantic Microlabs, Norcross, GA.

### Synthesis and chemicals

All reactions were carried out under an atmosphere of dry, oxygen-free nitrogen using standard Schlenk and glovebox techniques. All solvents were distilled, degassed, and stored over 4 Å sieves before use. Anhydrous CH<sub>3</sub>CN was purchased from Aldrich. CD<sub>3</sub>CN was purchased from Cambridge Isotopes. PCy<sub>3</sub>, dppm, dppe, dmpm and dmpe were purchased from Strem Chemicals. PCy<sub>3</sub>, dppm and dppe were purified by sublimation before use. Rh<sub>2</sub>(OAc)<sub>4</sub> was synthesized using the procedures of Wilkinson *et al.* <sup>16</sup> [Rh<sub>2</sub>(OAc)<sub>2</sub>(CH<sub>3</sub>CN)<sub>4</sub>][BF<sub>4</sub>]<sub>2</sub> was synthesized by the method of Garner *et al.* <sup>9</sup> PMe<sub>3</sub> was made using the standard procedure of Fackler *et al.* <sup>17</sup> and purified by distillation.

#### **NMR** studies

Typical samples were made by dissolving 10 mg (0.0134 mmol) of [Rh₂(OAc)₂(CH₃CN)₀][BF₄]₂ in 0.5 ml of CD₃CN. The sample was cooled to −30 °C. Appropriate quantities (0.0134/0.0268 mmol) of PMe₃, dmpm and dmpe were added using a microliter syringe at −30 °C. Solid PCy₃/dppe/dppm were added directly to the solution containing [Rh₂(OAc)₂(CH₃-CN)₀][BF₄]₂ under a helium atmosphere; the NMR tubes were sealed by following the normal freeze–pump–thaw procedure at −178 °C.

The samples thus prepared were transferred to a preequilibrated NMR probe for studies of kinetics. The delay d1 used for <sup>31</sup>P{<sup>1</sup>H} NMR was 5 s, 400 scans were accumulated and then Fourier transformed to give a suitable spectrum. The concentrations of various species present in solution were estimated by the integration of their <sup>31</sup>P{<sup>1</sup>H} signals.

Estimates of the activation parameters and determination of rate constants were carried out according to procedures described previously in this journal. A summary of <sup>31</sup>P{<sup>1</sup>H} NMR data for the various compounds described herein is given in Table 3.

# Reactions

Of [Rh<sub>2</sub>(OAc)<sub>2</sub>(CH<sub>3</sub>CN)<sub>4</sub>][BF<sub>4</sub>]<sub>2</sub> with 2PCy<sub>3</sub>. Two equivalents of PCy<sub>3</sub> (37.5 mg, 0.134 mmol) in 20 ml of degassed CH<sub>3</sub>CN was added to a purple colored solution of [Rh<sub>2</sub>-(OAc)<sub>2</sub>(CH<sub>3</sub>CN)<sub>6</sub>][BF<sub>4</sub>]<sub>2</sub> (50 mg, 0.67 mmol) in 20 ml of degassed CH<sub>3</sub>CN at 25 °C. This resulted in a deep red colored solution. The reaction mixture was allowed to stir overnight ( $\approx$ 12 h) to give a greenish red color. The solvent was removed *in vacuo* and 20 ml of anhydrous methanol were added to the sticky paste and the solution was cooled to -20 °C. Deep reddish green crystalline material was obtained in near quantitative yield (75 mg, 92%) overnight. Suitable crystals were submitted for X-ray analysis. <sup>1</sup>H NMR:  $\delta$  2.61 (s, 1H), 2.43 (s, 1H), 2.38 (s, 1H), 2.12 (s, 1H), 2.09 (s, 1H), 1.95 (s, 3H), 1.80 (m), 1.3 (m). IR/cm<sup>-1</sup>: 2976 (s), 2941 (s), 1688 (w), 1522 (s),

|                                                                                                             | Axial P $(\delta)$                                      | Equatorial P $(\delta)$                                                                                                                                      |
|-------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1. [Rh <sub>2</sub> (OAc) <sub>2</sub> (CH <sub>3</sub> CN) <sub>4</sub> (PMe <sub>3</sub> ) <sub>2</sub> ] |                                                         |                                                                                                                                                              |
| Class I (biaxial) isomer                                                                                    | $-35.5$ (dd, $J_{\rm Rh-Rh}$                            |                                                                                                                                                              |
| Class III (monoaxial, monoequatorial) isomers (A) (B)                                                       | = 55 Hz, ${}^{2}J_{Rh-P}$ = 2<br>-44.0 (m)<br>-35.8 (m) | $^{5}$ Hz, $J_{P-P} = 400$ Hz)<br>+10.6 (dd, $^{1}J_{Rh-P} = 152$ Hz, $^{2}J_{Rh-P} = 17$ Hz)<br>+17.0 (dd, $^{1}J_{Rh-P} = 145$ Hz, $^{2}J_{Rh-P} = 15$ Hz) |
| Class II (biequatorial) isomer                                                                              | 33.0 (111)                                              | + $2 (d, {}^{1}J_{Rh-P} = 153 \text{ Hz}), +12.8 (d, {}^{1}J_{Rh-P} = 135 \text{ Hz})$                                                                       |
| 2. [Rh <sub>2</sub> (OAc) <sub>2</sub> (CH <sub>3</sub> CN) <sub>4</sub> (PCy <sub>3</sub> ) <sub>2</sub> ] |                                                         |                                                                                                                                                              |
| Class I (biaxial) isomer                                                                                    | -4.4 (m)                                                |                                                                                                                                                              |
| Class III (monoaxial, monoequatorial) isomers                                                               | -6.0  (m)                                               | $+42.0 \text{ (dd, } {}^{1}J_{\text{Rh-P}} = 146 \text{ Hz, } {}^{2}J_{\text{Rh-P}} = 14 \text{ Hz)}$                                                        |
| 3. $[Rh_2(OAc)_2(CH_3CN)_4(dmpe)]$                                                                          |                                                         |                                                                                                                                                              |
| Class I (biaxial) isomer                                                                                    | -26 (br, m)                                             |                                                                                                                                                              |
| Class III (monoaxial, monoequatorial) isomers                                                               | -27.0 (m)                                               | $+37.1 \text{ (d, }^{1}J_{\text{Rh-P}} = 79 \text{ Hz)}$                                                                                                     |
| 4. [Rh <sub>2</sub> (OAc) <sub>2</sub> (CH <sub>3</sub> CN) <sub>4</sub> (dppe)]                            |                                                         |                                                                                                                                                              |
| Class I (biaxial) isomer                                                                                    | -10 (br, m)                                             |                                                                                                                                                              |
| Class III (monoaxial, monoequatorial) isomers<br>Class II                                                   | -36.1  (m)                                              | $+59.0 \text{ (d, }^{1}J_{\text{Rh-P}} = 132 \text{ Hz)}  +59.0 \text{ (d, }^{1}J_{\text{Rh-P}} = 132 \text{ Hz)}$                                           |
| 5. [Rh <sub>2</sub> (OAc) <sub>2</sub> (CH <sub>3</sub> CN) <sub>4</sub> (dmpm)]                            |                                                         |                                                                                                                                                              |
| Class I (biaxial) isomer                                                                                    | -25 (br, m)                                             |                                                                                                                                                              |
| 6. [Rh <sub>2</sub> (OAc) <sub>2</sub> (CH <sub>3</sub> CN) <sub>4</sub> (dppm)]                            |                                                         |                                                                                                                                                              |
| Class I (biaxial) isomer                                                                                    | -26 (br, m)                                             |                                                                                                                                                              |

<sup>&</sup>lt;sup>a</sup> All spectra were referenced to external  $H_3PO_4$ . Only one monoaxial monoequatorial isomer is seen for entry 2. There were a number of peaks seen for entries 5 and 6. However, it was not possible to determine whether or not the Rh–Rh remained intact in these reactions and so the <sup>31</sup>P{<sup>1</sup>H} NMR values for the Class II and Class III isomers are not reported.

Table 4 Summary of crystal data

|                                        | [Rh(CH3CN)2(PCy3)2][BF4]       | $[Rh_2(OAc)_2(CH_3CN)_3(PCy_3)_2][BF_4]_2$ |
|----------------------------------------|--------------------------------|--------------------------------------------|
| Empirical formula                      | $C_{40}H_{72}BF_4N_2P_2Rh$     | $C_{46}H_{81}N_3B_2F_8O_4P_2Rh_2$          |
| Color of crystal                       | Yellow                         | Red                                        |
| Crystal dimensions/mm                  | $0.30 \times 0.30 \times 0.45$ | $0.28 \times 0.25 \times 0.42$             |
| Space group                            | $P2_1nm$                       | $P\bar{1}$                                 |
| Crystal system                         | Orthorhombic                   | Triclinic                                  |
| T/°C                                   | 25                             | -170                                       |
| a/Å                                    | 9.879(1)                       | 14.638(2)                                  |
| b/Å                                    | 13.275(1)                      | 16.055(3)                                  |
| c/Å                                    | 16.705(1)                      | 12.507(2)                                  |
| a∕°                                    |                                | 94.55(1)                                   |
| βľ°                                    |                                | 90.41(1)                                   |
| γ/°<br>Z                               |                                | 72.13(1)                                   |
| $Z_{\perp}$                            | 4                              | 2                                          |
| V/ų                                    | 2190.76                        | 2788.12                                    |
| $d_{\rm calcd}/{ m g~cm^{-3}}$         | 2.367                          | 1.407                                      |
| Molecular weight                       | 832                            | 1181.53                                    |
| $\mu$ /cm <sup>-1</sup>                | 9.278                          | 7.042                                      |
| $2\theta$ range/°                      | 6–45                           | 6–45                                       |
| Total no. of reflections collected     | 3159                           | 7850                                       |
| No. of unique intensities              | 1589                           | 7261                                       |
| No. with $F > 0.0$                     | 1575                           | 6770                                       |
| No. with $F > 2.33\sigma(F)$           | 1554                           | 5405                                       |
| R(F)                                   | 0.0271                         | 0.0508                                     |
| $R_{\mathbf{w}}(F)$                    | 0.0270                         | 0.0499                                     |
| Goodness of fit for last cycle         | 1.644                          | 1.600                                      |
| Maximum $\delta/\sigma$ for last cycle | 0.09                           | 0.05                                       |

<sup>&</sup>lt;sup>a</sup> Due to problems with crystallographic disorder, full structural data are not being reported for this structure.

1398 (vs, br), 1267 (s), 1170 (w), 1036 (br, vs). Found: C = 46.74, H = 6.86, N = 3.56. Calc. for  $[Rh_2(OAc)_2(CH_3CN)_4(PCy_3)_2]$ - $[BF_4]_2$ : C = 46.29, H = 7.02, N = 3.39%.

If the reaction mixture was left to stir for 24 h it resulted in a light orange colored solution with black insoluble material at the bottom of the flask. This solution was filtered, concentrated and kept at -20 °C. Bright yellow crystals were obtained in approximately 40% yield (18 mg) after 2 d. IR/cm<sup>-1</sup>: 2941 (s, br), 2741 (s), 1477 (s), 1267 (s), 1171 (w), 1036 (br, vs, d). Found:

C = 57.49, H = 8.55, N = 3.30. Calc. for  $[Rh(CH_3CN)_2(PCy_3)_2]$ - $[BF_4]$ : C = 57.70, H = 8.66, N = 3.37%.

Of  $[Rh_2(OAc)_2(CH_3CN)_6][A]_2$  (A = BF<sub>4</sub> or PF<sub>6</sub>) with 2PMe<sub>3</sub>. Two equivalents of PMe<sub>3</sub> (0.134 mmol) were added to a purple colored solution of  $[Rh_2(OAc)_2(CH_3CN)_6][A]_2$  (0.067 mmol) in 20 ml of degassed  $CH_3CN$  at -30 °C. This resulted in a deep red colored solution. The temperature was slowly brought to 25 °C and the reaction was stirred for 1 h. The color of the

solution changes from deep red to light orange. Cooling to  $-20\,^{\circ}\mathrm{C}$  resulted in a light orange colored powder. Unfortunately, X-ray quality crystals could not be obtained from these reactions.

Of  $[Rh_2(OAc)_2(CH_3CN)_4][BF_4]_2$  with dppe. To an acetonitrile solution containing  $[Rh_2(OAc)_2(CH_3CN)_4][BF_4]_2$  (50 mg, 0.67 mmol) solid dppe (26 mg, 0.67 mmol) was added. The purple colored solution turned deep red within 5 min. This solution was heated to 80 °C for 1 h; the solution was concentrated and cooled to -20 °C. After 2 d, purple crystals were obtained, the analysis of which showed it to be the starting material.

### Single crystal X-ray studies

General operating procedures and listings of programs have been previously reported.<sup>18</sup> A summary of crystal data is given in Table 4

CCDC reference number 186/1870.

See http://www.rsc.org/suppdata/dt/b0/b001444n/ for crystallographic files in .cif format.

## Acknowledgements

We thank the National Science Foundation for support.

#### References

- 1 F. A. Cotton and R. A. Walton, in *Multiple Bonds Between Metal Atoms*, Oxford University Press, 2nd edn., 1993.
- 2 R. G. Hughes, Jr., J. L. Bear and A. P. Kimbell, *Proc. Am. Assoc. Cancer Res.*, 1972, 13, 120.
- 3 (a) C. A. Crawford, J. H. Matonic, W. E. Streib, J. C. Huffman,

- K. R. Dunbar and G. Christou, *Inorg. Chem.*, 1993, **32**, 3125; (b) C. A. Crawford, *Synthesis, Characterization and Reactivity of Dinuclear Rhodium(11) Complexes Containing Nitrogen Donor Ligands: A Model Approach to Antitumor Activity*, Ph.D. Thesis, Indiana University, 1995.
- 4 (a) J. M. Casas, R. H. Cayton and M. H. Chisholm, *Inorg. Chem.*, 1991, 30, 358; (b) M. H. Chisholm and A. M. Macintosh, *J. Chem. Soc.*, *Dalton Trans.*, 1999, 1205.
- 5 H. Chen and F. A Cotton, Polyhedron, 1995, 14, 2221.
- 6 R. H. Cayton, S. Chacon, M. H. Chisholm and K. Folting, *Polyhedron*, 1995, 12, 415.
- 7 M. H. Chisholm, K. Folting, K. G. Moodley and J. L. Wesemann, *Polyhedron*, 1996, **15**, 1903.
- 8 F. Basolo and R. G. Pearson, in *Mechanisms of Inorganic Reactions*. *A Study of Metal Complexes in Solution*, John Wiley Publishers, New York, 2nd edn., 1968.
- 9 G. Pimblett and C. D. Garner, J. Chem. Soc., Dalton Trans., 1986, 1257.
- 10 G. Pimblett, C. D. Garner and W. Clegg, J. Chem. Soc., Dalton Trans., 1985, 1977.
- 11 A. R. Siedle, W. B. Gleeson, R. A. Newmark, R. P. Skarjune, P. A. Lyon, G. C. Markell, K. O. Hodgson and A. L. Roe, *Inorg. Chem.*, 1990, 29, 1667.
- 12 J. Telser and R. S. Drago, Inorg. Chem., 1986, 25, 2989.
- 13 C. A. Tolman, Chem. Rev., 1977, 77, 313.
- 14 M. H. Chisholm and J. M. McInnes, J. Chem. Soc., Dalton Trans., 1997, 2735.
- 15 (a) V. Riena, M. A. Ruiz, F. Villafare, C. Bois and Y. Jeanin, *Organomet. Chem.*, 1990, **382**, 407; (b) F. A. Cotton and M. Matsusz, *Polyhedron*, 1987, **6**, 261.
- 16 G. A. Rempel, P. Legzdins, H. Smith and G. Wilkinson, *Inorg. Synth.*, 1972, 13, 90.
- 17 M. L. Luetkins, Jr., A. P. Sattelberger, H. H. Murray, J. D. Basil and J. P. Fackler, Jr., *Inorg. Synth.*, 1982, 22, 7.
- 18 M. H. Chisholm, K. Folting, J. C. Huffman and C. C. Kirkpatrick, Inorg. Chem., 1984, 23, 1021.
- 19 C. K. Johnson, ORTEP, Report ORNL-5138, Oak Ridge National Laboratory, Oak Ridge, TN, 1976.